Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 268: 104715, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36058541

RESUMO

Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an urgent threat to human health. Major outer membrane proteins (OMPs) porin mutation is one important resistance mechanism of CRKP, and may also affect the inhibition activity of ß-lactam and ß-lactamase inhibitor combinations. The ertapenem-resistant K. pneumoniae strain 2018B120 with major porin mutations was isolated from a clinical patient. Genomic and time-series proteomic analyses were conducted to retrieve the ertapenem-challenged response of 2018B120. The abundance changing of proteins from PTS systems,  ABC transporters, the autoinducer 2 (AI-2) quorum sensing system, and antioxidant systems can be observed. Overexpression of alternative porins was also noticed to balance major porins' defection. These findings added a detailed regulation network in bacterial resistance mechanisms and gave new insights into bypass adaptation mechanisms the porin deficient bacteria adopted under carbapenem antibiotics pressure. SIGNIFICANCE: Outer membrane porins deficiency is an important mechanism of carbapenem resistance in K. pneumoniae. Comprehensive genomic and proteomic profiling of an ertapenem-resistant K. pneumoniae strain 2018B120 gives a detailed systematic regulation network in bacterial resistance mechanisms. Overexpression of alternative porins to balance major porins' defection was noticed, giving new insights into bypass adaptation mechanisms of porin deficient bacteria.


Assuntos
Klebsiella pneumoniae , Porinas , Resistência beta-Lactâmica , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/farmacologia , Antioxidantes/metabolismo , Proteínas de Bactérias/metabolismo , Carbapenêmicos/metabolismo , Carbapenêmicos/farmacologia , Ertapenem/metabolismo , Ertapenem/farmacologia , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , Porinas/genética , Porinas/metabolismo , Proteômica/métodos , Resistência beta-Lactâmica/genética , Inibidores de beta-Lactamases/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia
2.
Front Microbiol ; 13: 862776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432229

RESUMO

Laribacter hongkongensis is a new emerging foodborne pathogen that causes community-acquired gastroenteritis and traveler's diarrhea. However, the genetic features of L. hongkongensis have not yet been properly understood. A total of 45 aquatic animal-associated L. hongkongensis strains isolated from intestinal specimens of frogs and grass carps were subjected to whole-genome sequencing (WGS), along with the genome data of 4 reported human clinical strains, the analysis of virulence genes, carbohydrate-active enzymes, and antimicrobial resistance (AMR) determinants were carried out for comprehensively understanding of this new foodborne pathogen. Human clinical strains were genetically more related to some strains from frogs inferred from phylogenetic trees. The distribution of virulence genes and carbohydrate-active enzymes exhibited different patterns among strains of different sources, reflecting their adaption to different host environments and indicating different potentials to infect humans. Thirty-two AMR genes were detected, susceptibility to 18 clinical used antibiotics including aminoglycoside, chloramphenicol, trimethoprim, and sulfa was checked to evaluate the availability of clinical medicines. Resistance to Rifampicin, Cefazolin, ceftazidime, Ampicillin, and ceftriaxone is prevalent in most strains, resistance to tetracycline, trimethoprim-sulfamethoxazole, ciprofloxacin, and levofloxacin are aggregated in nearly half of frog-derived strains, suggesting that drug resistance of frog-derived strains is more serious, and clinical treatment for L. hongkongensis infection should be more cautious.

3.
Front Microbiol ; 10: 2495, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787938

RESUMO

Legionella pneumophila, an environmental bacterium that parasitizes protozoa, is the causative pathogen of Legionnaires' disease. L. pneumophila adopts a distinct biphasic life cycle that allows it to adapt to environmental conditions for survival, replication, and transmission. This cycle consists of a non-virulent replicative phase (RP) and a virulent transmissive phase (TP). Timely and fine-tuned expression of growth and virulence factors in a life cycle-dependent manner is crucial. Herein, we report evidence that CsrA, a key regulator of the switch between the RP and the TP, is dually regulated in a ClpP-dependent manner during the biphasic life cycle of L. pneumophila. First, we show that the protein level of CsrA is temporal during the life cycle and is degraded by ClpP during the TP. The ectopic expression of CsrA in a ΔclpP mutant, but not in the wild type, inhibits both the initiation of the RP in vitro and the invasiveness to Acanthamoeba castellanii, indicating that the ClpP-mediated proteolytic pathway regulates the CsrA protein level. We further show that the temporally expressed IHFB is the transcriptional inhibitor of csrA and is degraded via a ClpP-dependent manner during the RP. During the RP, the level of CsrA is increased by promoting the degradation of IHFB and reducing the degradation of the accumulated CsrA via a ClpP-dependent manner. During the TP, the level of CsrA is decreased by inhibiting the degradation of IHFB and promoting the degradation of the accumulated CsrA via a ClpP-dependent manner as well. In conclusion, our results show that the growth-stage-specific expression level of CsrA is dually regulated by ClpP-dependent proteolysis at both the transcription and protein levels during the biphasic life cycle of L. pneumophila.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...